
N95- 31251

Does Software Design Complexity

Affect Maintenance Effort?

Andreas Epping*

Coopers & Lybrand

Consulting GmbH

New-York-Ring 13

22297 Hamburg, Germany

Christopher M. Lott

Software Technology Transfer Initiative

Department of Computer Science

University of Kaiserslautern

67653 Kaiserslautem, Germany

19th Annual Software Engineering Workshop, 30 Nov-I Dec 1994

.' /

Abstract

The design complexity of a software system may be
characterized within a refinement level (e.g., data flow

among modules), or between refinement levels (e.g.,

traceability between the specification and the design).

We analyzed an existing set of data from NASA's Soft-

ware Engineering Laboratory to test whether changing

software modules with high design complexity requires

more personnel effort than changing modules with low

design complexity. By analyzing variables singly, we

identified strong correlations between software design

complexity and change effort for error corrections per-

formed during the maintenance phase. By analyzing
variables in combination, we found patterns which iden-

tify modules in which error corrections were costly to

perform during the acceptance test phase.

1 Introduction

Software systems seldom remain unchanged after their

initial development and delivery. A system may be ex-

tended to fulfill new specifications or may be repaired

to remove faults. These changes, as well as many oth-

ers, are performed during a period of time called the

maintenance phase.
Some authors see software design complexity as a

highly important factor affecting the costs of software

development and maintenance [Rom87, CA88]. We

performed a study to test the hypothesis that changes to

modules with high software design complexity require

*At the time this study was performed, Epping was a student in

the Department of Computer Science, University of Kaiserslautern.

more personnel effort than changes to modules with low

complexity. We define software design complexity in
terms of several different factors, and test the hypothesis

by investigating how the complexity factors affect the

costs of changing the software.

If we can determine the impact of the complexity fac-

tors on maintenance effort, we can develop guidelines

which will help reduce the costs of maintenance by rec-

ognizing troublesome situations early. In response to
these situations, the developers may decide to reduce

the software design complexity of the systems them-

selves, to develop tools that support maintenance of

complex modules, to write documentation that helps the

developers manage the complexity better, or simply to
re-allocate resources to reflect the situation. Our results

might even be used to justify an expensive, controlled

experiment to test the hypothesis more rigorously.

In the case study presented here, we used an existing

set of data to investigate the impact of software design

complexity on the effort required to implement changes

during the acceptance test and maintenance phases. We

studied two FORTRAN systems from NASA's Software

Engineering Laboratory (SEL). The independent vari-

ables of the design complexity included a mapping to

the specification, global data bindings, and control flow

relationships. The dependent variables on maintainabil-

ity were gathered by the SEL and include the necessary

effort for isolating and implementing changes.

This paper extends work first presented in [Epp94].

Section 2 gives the design of the case study, Section 3

discusses our complexity and effort metrics, and Sec-

tion 4 explains the context of the study. Section 5

states the results for the maintenance and acceptance

SEW Proceedings

PRECEDING PAGE _liJ',H_ NOT F_._',i:_i_

297
SEL-94-006

test data, and sketches related work. Finally, Section 6

summarizes lessons for the SEL, the researchers, and

the software-engineering community.

2 Designing the Study

This study, which was motivated in part by [Rom87], be-

gan by refining the original hypothesis into two, closely
related hypotheses:

Hypothesis 1: Changing modules that implement

many specifications requires more effort than changing

modules that implement few specifications.

Hypothesis 2: Changing modules that are tightly

coupled to each other via data and control-flow rela-

tionships requires more effort than changing modules

that are loosely coupled to each other.

2.1 Design

The case study to test our hypotheses was designed us-

ing the Goal/Question/Metric Paradigm [BW84, BR88].

Our G/Q/M goal was to analyze two FORTRAN systems

for the purpose of characterizing them with respect to

the influence of design complexity on the maintainabil-

ity of modules, from the point of view of the researchers

within the context of the SEL. We analyzed vertical de-

sign complexity (traceability to specifications) and hor-

izontal desig'n complexity (coupling among modules).

We defined maintainability in terms of change isolation

effort, change implementation effort, and the number of

modules changed (locality of the change). Using these

definitions, we refined the goal into a set of questions,

and in turn refined the questions into a set of metrics.

Figure 1 diagrams the relationship of the goal and the

following sets of questions and metrics.

Goal

QI Q2.1 Q2.3 Q2.5 Q2.2 Q2.4 Q2.6

M1 M2, M3, M4, M5, M6, M7, M8, M9

Figure 1: Goal, questions, and metrics

QI: What are the characteristics of the software sys-

tems, the environment, the processes followed, and

the personnel? Answers are given in Section 4.

Q2.1/2.2: Is the vertical/horizontal design complexity

of modules affected by changes with high isolation

effort greater than modules affected by changes
with low effort?

Q2.3/2.4: Is the vertical/horizontal design complexity

of modules affected by changes with high imple-

mentation effort greater than modules affected by
changes with low effort?

Q2.5/2.6: Is the vertical/horizontal design complexity

of modules affected by changes that touched a large

number of modules greater than modules affected

by changes that touched few modules?

Answers to questions Q2.x will be developed using

the following design complexity and change effort met-
rics, which are discussed in detail in Section 3:

MI: The number of specifications a module fulfills,

either directly or indirectly.

M2: Number of common blocks used in a module.

M3: Number of global variables visible in a module.

M4: Number of global variables used in a module.

M5: Ratio of used:visible global variables.

M6: Number of potential data bindings in a module.

M7: Number of used data bindings in a module.

M8: Measure of fan-in for a module.

M9: Measure of fan-out for a module.

M10: Isolation effort per module per change.

Mll: Implementation effort per module per change.

M12: Number of modules affected by a change.

2.2 Available data

Although we would like to assume that all changes are

similar in size, this may not be so for enhancements,

which range from trivial to extensive. However, we

can assume similarity in the size of changes for error
corrections.

Table 1 shows the count of data points from the ac-

ceptance test and maintenance phases (error corrections

are a subset of all changes). Although our original

SEW Proceedings
298 SEL-94-006

Phase
Change types

Error Corrections All Changes

Acceptance test 302 508

Maintenance 17 33

Table 1 : Data points according to category

goal was to focus on maintenance changes, the limited

data encouraged us to include acceptance-test changes.

However, interpretation of that data is difficult owing to

the different environments, as discussed in Section 4.

2.3 Analysis and threats to validity

The study tests our hypotheses by checking for rela-

tionships between the independent variables concerning

software design complexity and the dependent variables

concerning change isolation effort, change implemen-

tation effort, and number of modules changed. The ap-

propriate statistical approach for univariate analysis is a

correlation analysis. As will be explained in Section 3,

both the isolation and implementation effort metrics lie

on an ordinal scale, so we must use a correlation tech-

nique which does not require ratio or interval-scale data.

We planned to compute Spearman rank-correlation co-

efficients with respect to single complexity measures of

the modules and the maintainability measures.

Based on the notion that a combination of indepen-

dent variables might better explain high change effort

than only a single variable, we planned to analyze

multiple variables in combination using a machine-

learning technique called Optimized Set Reduction

(OSR) [BTH93, BBH93]. OSR finds patterns in the

independent (explanatory) variables which reliably pre-

dict values of a single dependent variable. The OSR

approach is insensitive to the scale of the data, but re-

quires a large data set, ideally several hundred points.

We planned to apply the OSR technique to the full data

vectors; i.e., consider all explanatory variables together.

If we can find strong correlations between design

complexity values and change effort values, or can find

patterns of large design complexity values that reliably

predict which modules are expensive to change, we will

have confirmed our hypotheses for this data set.

There were at least two threats to internal validity.

First, the nature of a case study meant that we were not
able to control or even measure the factors that influ-

enced the SEL personnel during their day-to-day activi-

ties. Second, individual differences may be responsible

for some variation (i.e., noise) in the data.

One significant threat to external validity is the spe-

cialization of the software-system design used by the

SEL. These results may not be applicable to other FOR-

TRAN systems.

3 Complexity and Maintainability

Curtis refines the concept of software complexity into

algorithmic and psychological complexity [CurS0]. Al-

gorithmic (or computational) complexity characterizes

the run-time performance of an algorithm. Psychologi-

cal complexity affects the performance of programmers

trying to understand or modify a code module. We mea-

sured two aspects of psychological complexity, namely

the vertical design complexity (the relationship between

specifications and modules) and the horizontal design

complexity (the relationship between modules). A mod-

ule is a file with a single subroutine. These relationships

are illustrated in Figure 2.

.M

E
g

>

I Spec SI]

A

i imple- writes read by

:meres _z

calls

Horizontal complexity

Figure 2: Vertical and horizontal design complexity

3.1 Vertical complexity: the relationship be-

tween specifications and modules

The vertical complexity of a module z is the number of

specifications the module helps implement. To measure

vertical complexity, we count how many specifications

a module implements directly (mentioned in the doc-

umentation) or indirectly (invoked by another module

that implements the specification directly or indirectly).

An example is shown in Figure 2, where module z helps

implement specificatmn S1 directly and calls module y,

meaning that module y helps implement S 1 indirectly.

SEW Proceedings 299 SEL-94-006

3.2 Horizontal complexity: the relationship

between modules

The horizontal complexity of a module z is character-

ized by the number of connections between that module

and other modules. An example is shown in Figure 2,

where module y writes data into a global variable g, that

is read in turn by module z. We analyzed the source

code to gather data for the following metrics:

• Number of COMMON blocks which are referenced

in a module.

• Number of visible global variables; i.e., the vari-

ables defined in the referenced COMMON blocks.

Number of used global variables; i.e., the visible

global variables that were also used in the code.

Ratio of used global variables to visible global
variables.

For modules p and q, and a variable z within the

static scope of both p and q, a potential data bind-

ing is defined as an ordered triple (p, q, z) [HB85].

Again using p, q, and x, a used data binding is a

potential data binding where p and q either read a

value from or assign a value to x [HB85].

• The fan-in measure of a module is the number of
other modules which call the module.

• The fan-out measure of a module is the number of
other modules which the module calls.

3.3 Maintainability

Maintainability is an abstract concept that cannot be

assessed directly but may be defined using attributes of

the software that can be measured. We use change effort

as our metric for maintainability.

Changes. The SEL distinguishes between three types

of changes. An error correction repairs faults in the

software. An enhancement implements changes for ex-

tended specifications. An adaptation makes provisions

for alterations in the system's environment. For us, the

error corrections were of primary interest.

Effort data. The analyses presented here are based

on a four-step model of the change activity that guides

data collection. In step one. the developers/maintainers

become aware of the need for a change. Step two in-

volves isolating the modules to be changed. In step

three, they plan and implement the change. Finally,

in step four they test the changed code. The change
effort data that was available to us were limited to the

following, routinely collected items [Nat91 b]:

• Isolation effort: the effort to determine which mod-

ules must be changed (step two).

• Implementation effort: the effort to plan, imple-

ment, and test the change (steps three and four)

• Locality: the number of components affected by a

change.

Effort expended during the maintenance phase is col-

lected as a point on an ordinal scale, namely "less than

one hour" "one hour to one day" "one day to one week,"

"one week to one month" and "greater than one month?'

Effort expended during the acceptance test phase is col-

lected using the ordinal scale of "less than one hour,"

"'one hour to one day," "one day to three days" and

"more than three days?'

4 Context of the Study

The study was conducted on two projects developed

by the Flight Dynamics Division (FDD) of NASA's

Goddard Space Flight Center. Data about the FDD's

projects are gathered by the Software Engineering Lab-

oratory (SEL), a cooperative effort of NASA's FDD,

Computer Sciences Corporation, and the University of

Maryland. The SEL was founded and began collecting

data about the FDD's development activities in 1976.

Data collection from maintenance activities began in

1988 [RUV92].

4.1 FDD Staff

The staff who performed the changes were familiar with

both the application domain (ground-support software

for satellites), which were similar for both systems, and

the solution domain (FORTRAN), which was identical for

both systems.

4

SEW Proceedings 300 SEL-94-006

4.2 Activities in the acceptance test phase

During the acceptance test phase, the original devel-

opers exercise the system to detect failures and repair

faults as needed [Nat91a]. Enhancements and adapta-

tions may also be made to the software during this phase

owing to new requirements.

4.3 Activities in the maintenance phase

During the maintenance phase, a team of software en-

gineers who were not the original developers tests the

software using simulators and modifies the systems as

needed [Nat91a]. These engineers are experts in their

application domain, but not necessarily highly familiar

with the software systems. The maintenance phase es-

sentially ends when satellites are launched; in any case,

no data are collected following the launch.

4.4 The software systems

Project 1 and Project 2 (names have been changed) are

ground-support software systems that were coded in

FORTRAN. Both were single-mission systems) Their

sizes were approximately 130 and 180 KSLOC (car-

riage returns). These systems determine the exact po-

sition of a satellite with respect to other planetary bod-

ies using data sent by the satellite. The systems do

not run continuously, they are not subject to real-time

constraints, and they are not required to meet highly

stringent reliability requirements. For both projects,
the software architecture and document standards are

highly similar and specific to the FDD environment.

4.4.1 Specifics of Project 1

Project I consists of 582 modules. Of those, 23 modules

are assembler modules, with a range of 6-3100 SLOC

(carriage returns). The other 559 modules are FORTRAN

modules (range 2-3200 SLOC). The system consists of

15 subsystems.

Changes in acceptance test. The developers pro-

cessed 179 change requests during acceptance testing.

Those change requests directly affected 163 unique

modules, but owing to multiple changes to the same

_A single-mission system is expected to cost 2% of development
costs per year in maintenance until ;t is taken out of service, while
a multi-mission system is expected to cost 10% [PS931.

modules, there were 306 changes to code modules. Of

the 163 changed modules, 32 modules were not avail-

able to us, or were assembler modules that were not

analyzed. Therefore 48 changes to individual modules

and 33 change requests total could not be analyzed.

Project 1 was in development (design, code, and test

activities) for approximately 28 calendar months. Of

those 28 months, the acceptance test phase lasted ap-

proximately 5 months.

Changes in maintenance. The single maintainer pro-

cessed 15 change requests during maintenance. Of

those, 5 were corrections, 9 were enhancements and

1 was an adaptation. Those change requests directly

affected 28 unique modules, but because of multiple

changes to the same modules, there were 37 changes to
code modules. The assembler modules were not con-

sidered (5 change requests, 2 modules).

The maintenance phase for Project 1 began in 1988.

Because of launch delays, it lasted about 33 months.

The level of effort was extremely low for much of that
time.

4.4.2 Specifics of Project 2

Project 2 consists of 816 modules. Of those, 31 mod-

ules are assembler modules (range 6-7300 SLOC). In

addition to the 747 FORTRAN modules (range 3-2800

SLOC), there are 38 data files (range 9--400 SLOC).

The system consists of 30 subsystems.

Changes in acceptance test. The developers pro-

cessed 413 change requests during acceptance testing.

Those change requests directly affected 346 unique

modules, but because of multiple changes to the same

modules, there were 850 changes to code modules. Of

the 346 changed modules, 119 modules were not avail-

able to us, or were assembler modules which were not

analyzed. Therefore 238 changes to individual modules

and 136 change requests total could not be analyzed.

Project 2 was also in development for approximately

28 calendar months. Of those 28 months, the acceptance

test phase lasted approximately 7 months.

Changes in maintenance. The four maintainers pro-

cessed 25 change requests during maintenance. Of

those, 12 were corrections, 12 were enhancements, and

I was an adaptation. Those change requests directly

SEW Proceedings 301 SEL-94-006

affected 55 unique modules, but because of multiple

changes to the same modules, there were 67 changes to

code modules. Fortunately for our analysis, the assem-

bler modules were not changed.

The maintenance phase for Project 2 began in 1988

and lasted about 19 months.

5 Results

After discussing some problems with the data, we

present results from analyzing the maintenance and ac-

ceptance test data and sketch results from related work.

resolved this difficulty by using an average for each

change, namely the average of the complexity measures

that were collected from the modules affected by that

change. All analyses therefore are focused on changes

rather than modules. However, by averaging, we re-

duced the range in complexity values, possibly losing

significant differences.

Finally, we concluded that significant differences in

effort were hidden by the ordinal scale of the effort

data. For example, a maintenance change that required

9 hours of implementation effort is quite different from

one that required 39 hours, but both are classified iden-

tically as "one day to one week,"

5.1 Data difficulties

We encountered some difficulties while trying to collect

the data for the metrics defined in Section 2. In all

fairness to the SEL, their data-collect.ion forms were

not designed to support such a detailed investigation,

and we could not change data collection after the fact,

so some problems were to be expected.

First, collecting data for metric M1 depended both

on the modularity of the specification and the traceabil-

ity of the specification to the code. At one extreme of

modularity, the whole project can be seen as one single

specification, while at the other extreme, every condi-

tion such as "x > 0" can be also seen as a specification.

We began by using the system description document, in

which a system is divided into 40-70 subspecifications.
Even with this coarse level of modularity, it was not pos-

sible to map the modules to the subspecifications with

any hope of accuracy because there was no document

containing this information. We resolved this difficulty

by simplifying the problem. Because the subsystems

(Projects 1 and 2 had 15 and 30, respectively) were eas-

ily identifiable both in the requirements document and

in the code, we essentially labeled each subsystem a

"specification." Then we traced modules back to sub-

systems by analyzing the calling structure of the code.

The change effort data presented a second problem.

In the SEL environment, a change activity occurs in re-

sponse to a change request, and may affect many mod-
ules. The effort data are collected for each change

activity, but no data for the change effort per module

are collected. Because it is impossible to determine

from the data how much change effort was expended

on individual modules, we could not obtain values for

metrics M 10, M 11, and M 12 as originally planned. We

5.2 Results from the maintenance data

5.2.1 Vertical complexity measures

First we tested hypothesis 1 using maintenance data,

subject to the caveats discussed in Section 5.1.

Data collection process. We built a prototype tool

that extracted the module calling trees from the FOR°

TRAN code for each subsystem. This information told

us which modules were part of a particular subsystem.

While collecting these data, we found that not all of the

modules changed are executable modules, and therefore

are not in the call tree. Measures of change effort were

obtained by querying the SEL database [Nat90] and by

examining the data-collection forms completed by the

maintainers after making the changes.

Results from univariate analyses. For Project 1, 19

modules that were changed were found in the call tree.

Of those 19 executable modules, only 3 supported mul-

tiple subsystems; i.e., helped implement more than one

specification. For Project 2, 32 modules that were

changed were found in the call tree. Of those 32 ex-

ecutable modules, only 1 supported multiple subsys-

tems. This left us with 4 data points for changed mod-

ules which supported multiple subsystems. None of the

4 modules participated in changes with above-average

isolation or implementation effort.

Results from multivariate analyses. The OSR tech-

nique requires a large set of data to be effective. Because
the maintenance data set was too small to be used, we

have no multivariate results.

6

SEW Proceedings 302
SEL-94-006

Interpretation. We could not support hypothesis 1;

the answer to questions 2.1, 2.3, and 2.5 was "not for

these data." Although our analysis found many mod-

ules that supported more than one subsystem, few of

those modules were changed. We later learned that

many of the modules which are widely reused are util-

ity functions or so-called "institutional software." This

term refers to modules that are reused repeatedly from

project to project and are rarely changed.

We also learned that subsystems are designed mostly

in isolation from one another, with the result that mod-

ules are not reused widely across subsystems. Although

our definition of a "specification" was arguably too

coarse, we could not refine the traceability further with-

out a detailed familiarity with the systems.

An interesting result was that for Project I, 12 of the

19 changed executable modules were from a single sub-

system No comparable, frequently changed subsystem

was identified in Project 2, although the changes were

clustered in 5 of the 30 subsystems.

5.2.2 Horizontal complexity measures

Next we tested hypothesis 2 using maintenance data.

Data collection process. We built a prototype tool
which counted the use of common blocks and common-

block variables in the FORTRAN code, and reused the

calling-tree information from the analysis of vertical

complexity for the measures of fan-in and fan-out. After

loading all the resulting data into a database system,

it computed the necessar? complexity values. Recall

that module complexity values were averaged on a per

change basis as explained in Section 5.1. Effort data
were obtained as discussed in Section 5.2.1.

Results from univariate analyses. Figure 3 uses data

about error corrections from the maintenance phase to

plot isolation effort against the average number of used

common blocks (metric M2) in the modules affected by

each change. This figure shows a trend towards higher

effort when the average number of common blocks is

also high. Thus encouraged, we computed correlations

for the change data from the maintenance phase.

Table 2 shows the Spearman rank-correlation coeffi-

cient values for the relationships between all indepen-

dent and dependent variables for all changes during

maintenance: Table 3 shows only the coefficient values

for error corrections. The correlations were computed

2

1

O 5 I0 lS

Avcragc number ot common bl_kx

Figure 3: Data for error corrections in maintenance

as explained in Section 2.3. An approximation of the

.05 cutoff (a 5% chance of obtaining the numbers by

chance) is given in both tables to help judge the signifi-
cance of the results.

Results from multivariate analyses. As mentioned

previously, we had too few data points to apply OSR to
the maintenance data.

Interpretation. When considering all changes during

maintenance, all measures of global variables corre-

lated positively {some significantly) with isolation ef-

fort. The counts of used globals and actual data bindings

showed the most significant correlation of all measures:

in an absolute sense the correlation is weak (approxi-

mately 0.60). These results support the idea that global

variables make a program difficult to understand, al-

though this conjecture was not supported by [LZ84]

(see also Section 5.4). We found no significant correla-

tion between complexity measures and implementation

effort, nor between complexity measures and the num-

ber of modules changed. The measures of control-flow

complexity were not helpful. To summarize the results

for all changes, we can support hypothesis 2 in some

respects: the answer to question 2.2 (isolation effort) is

a qualified yes for some of the measures, but the an-

swer to questions 2.4 (implementation effort) and 2.6

(locality) is "not for these data."

When considering just the error corrections during

maintenance, the measures of global variables correlate

positively and much more strongly with the isolation

effort than previously. Both the counts of used globals

SEW Proceedings 303 SEL-94-O06

Dependent variables

(averages per change)

M2: Common blocks

M3: Visible global vars

M4: Used globals vars

M5: Ratio used:visible globals

M6: Potential data bindings

M7: Used data bindings

M8: Fan-in

M9: Fan-out

Independent variables

Isolmion Implem'n
effo_ effo_

.415 .088

.575 .207

.628 .228

.534 .303

.528 .193

.599 .214

-.268 -.010

.322 .181

Modules

changed

-.376

-.303

-.198

.105

-.330

-.294

N = 33, critical r (.05) t approximation = .343

Table 2: Spearman rank-correlation coefficients for all changes during maintenance

Dependent variables

(averages per change)

M2: Common blocks

M3: Visible global vars

M4: Used global vats

Independent variables
Modules

changed

-.169

-.143

.000

M5: Ratio used:visible globals .164

M6: Potential data bindings -.214

Isolation Implem'n
effort effoa

.738 ,403

.785 .511

.799 .511

.619 .493

.770 .511

.813 .511

-.406 -.208

.610 .545

M7: Used data bindings

M8: Fan-in

M9: Fan-out -.143

N = 17, critical r (.05) t approximation = .482

Table 3: Spearman rank-correlation coefficients for error corrections during maintenance

SEW Proceedings 304
SEL-94-006

and actual data bindings again showed the most signifi-

cant correlations, in this case fairly strong in an absolute

sense (approximately 0.80). We also found correlations

with implementation effort; some were significant but

again weak in an absolute sense (approximately 0.50).

Fan-out correlated positively weakly with both mea-

sures of effort. No measures correlated with the number

of affected modules. To summarize the results for the

error corrections, we can support hypothesis 2 strongly;

the answers to questions 2.2, 2.4, and 2.6 are a reason-

able yes, a weak yes, and another "not for these data."

Finally, we found it interesting that the number of

changed modules frequently correlated negatively, al-

though weakly, with the complexity values. We are

unable to explain this result.

5.3 Results from the acceptance test data

As mentioned earlier, we extended the scope of the

study to include data from the acceptance test phase.

The results must be interpreted carefully, because the

measures of the source code were computed using the

code as it existed at the end of the maintenance phase.

A version of the code from the end of the acceptance

test phase was not available.

5.3.1 Vertical complexity measures

Due to the problems discussed in Sections 5.1 and 5.2.1,

we did not test hypothesis 1 using acceptance test data.

5.3.2 Horizontal complexity measures

Finally, we tested hypothesis 2 using the acceptance test
data.

Data collection process. The measures M2 to M9

were computed from the source code as of the end of the

maintenance phase. Again, module complexity values

were averaged on a per change basis as explained in

Section 5.1. Measures of change effort were obtained

by querying the SEL database [Nat90].

Results of univariate analyses. Figure 4 uses data

about error corrections from the acceptance test phase

to plot the isolation effort against the average num-

ber of common blocks in the modules affected by each

change. Plots of isolation and implementation effort

g

__ 2

; ;0 ;0
Average number of common blocks

Figure 4: Data for error corrections in acceptance test

against other independent variables were similarly ran-

dom, which discouraged us from computing univariate
correlations.

Results of multivariate analyses. Because we had

data for several hundred changes in the acceptance

test phase, we were able to apply the OSR tech-

nique [BTH93, BBH93]. Based on the results achieved

when working with the maintenance data, we restricted

the data set to the error corrections. All analyses took

the approach of trying to identify whether the error cor-

rections (changes) would be inexpensive or expensive,

where inexpensive was defined as requiring one day

or less (the lower two values on the ordinal scale) and

expensive was defined as requiring more than one day

(the upper two values). The technique found reliable

patterns when using isolation effort as the dependent

variable, but found no reliable results when using im-

plementation effort or locality as the dependent variable.

All results are expressed as OSR patterns. Patterns

provide interpretable models where the impact of each

predicate can be easily evaluated [BTH93]. An OSR

pattern is a set of one or more predicates, where pred-

icates have the form (EV, E EVclass,_), meaning that

a particular explanatory (independent) variable EVi be-

longs to part of its value domain, i.e., EVclassi/. Taken
as a whole, the pattern predicts whether the value of the

dependent variable will be in the high-cost or the low-

cost class. For each pattern, we state the reliability of

the prediction (a measure of pattern accuracy), and the

significance level of the reliability (whether the pattern

is based on a sufficiently large set of data to be trusted).

The OSR technique found reliable and significant pat-

SEW Proceedings 305 SEL-94-O06

terns which predict low and high isolation effort. We

present patterns which had high reliability values (> 0.8)

and low reliability significance values (< 0.05).

Pattern LI:

Fan-in E 26-100% AND

fan-out c 0-50% _ low

(reliability 0.85, rel. sig. 0.0t 1)

Pattern Li suggests that modules with medium to

high tan-in values and low fan-out values were easy

to change (predicts low isolation effort). This pattern

may indicate leaf modules (such as library subroutines)

which are called frequently but call few other modules.

Pattern L2:

Used var _ 0-12% OR

used db C 0-11% -_ low

(reliability 0.92, re[. sig. 0.001)

Pattern L2 suggests that modules with low numbers

of used variables or low numbers of used data bindings

were easy to change (predicts low isolation effort).

Pattern HI:

Fan-in E 8-26% AND

(used db 6 20-100% OR

used vat 6 20-100%) _ high

(reliability 1.00, tel. sig. 0.000)

Pattern H1 suggests that if a module is called by a rel-

atively low number of other modules, and additionally

has many used data bindings or many used variables,

then that module was expensive to change (predicts high

isolation eft'on).

Pattern H2:

Ratio used:visible E 63-100% AND

(vis var E 34-100% OR

used db E 30-100%) _ high

(reliability 1.00, tel. sig. 0.001)

Pattern H2 suggests that if a module has a high ratio

of used to visible global variables, and additionally has

many visible variables or many used data bindings, then

that module was expensive to change (predicts high

isolation effort).

Pattern H3:

Fan-out E 42-100%

AND used db E 59-100% _ high

(reliability 1.00, rel. sig. 0.007)

Pattern H3 suggests that modules which call many

other modules and have many data bindings to other

modules were expensive to change (predicts high isola-

tion effort).

Interpretation. The univariate analyses were not

helpful, but the OSR analysis identified some patterns

that reliably characterize modules which participated

in error corrections with both low and high isolation

effort. All of the patterns support hypothesis 2. We

have not established a causal relationship between the

patterns and isolation effort, no statistical analysis tech-

nique does so, but we have identified a set of patterns

that may be suitable for further investigation.

5.4 Results from related studies

We summarize the results of previous studies and ex-

periments that analyzed the effects of design complexity

on various dependent variables. Note that comparisons

with related work are dangerous owing to different def-

initions of both independent and dependent variables.

Lohse and Zweben [LZ84] ran a controlled exper-

iment to examine the effects of data coupling (data

flo_v among modules) via global variables versus formal

parameters, in the context of performing maintenance

changes (enhancements) to two software systems. The

primary dependent variable was the time required to

implement the enhancement. They found no significant

differences attributable to the use of global variables

versus formal parameters.

Card et al. [CCA86] performed a case study on five

SEL FORTRAN systems to examine the impact of var-

ious design practices on the dependent variables fault

rate and cost in the context of development. They found

no correlation with the percentage of referenced vari-

ables in COMMON blocks but a positive correlation

with the number of descendants (fan-out). The percent-

age of unreferenced variables from COMMON blocks

correlated with faults, but not with cost.

Rombach [Rom87] ran a controlled experiment to

examine the effects of various programming-language

constructs on isolation effort, implementation effort,

and locality in the context of performing mainte-

nance changes (enhancements) to two software systems.

Complexity was measured in terms of information flow,

which includes both data bindings and control flow be-

tween modules. He found a correlation of both isola-

tion effort and locality with external complexity, but no

10

SEW Proceedings 306
SEL-94-O06

correlation of implementation effort with external com-

plexity. Our results support his with respect to isolation

and implementation effort, but not locality.

Card and Agresti [CA88] performed a case study on

SEL FORTRAN systems to test for a relationship between

a combined complexity measure and either productivity

(lines of code delivered per unit of time) or fault rate in

the context of development. Their combined measure

of local complexity' (e.g., cyclomatic complexity) and

structural complexity (e.g., module fan-out) correlated

well with productivity and number of faults. Because

their study does not separate local (internal) complexity

from structural (external) complexity, we cannot com-

pare results.

6 Conclusion and Lessons Learned

The data from the two SEL systems support our hypoth-

esis 2, so we can answer in the affirmative that horizontal

design complexity appears to affect maintenance effort

(isolation effort for error corrections). However, we

have only demonstrated a possible relationship. We

cannot establish causation using a case study.

Next we summarize the results of the study in terms
of what the SEL can learn, what we learned, and what

the software-engineering community can learn. Our

analyses, which we primarily see as pointers for further

investigation, found a number of relationships between

software design complexity and maintenance effort that

might help the SEL predict maintenance effort. Uni-

variate analysis showed that the metrics "used globals"

and "'used data bindings" correlated strongly with the

isolation effort for error corrections performed during

the maintenance phase. Data for other metrics relat-

ing to the definition and use of global variables also

correlated with isolation effort, but much less strongly

with implementation effort. The measure of fan-out

was also somewhat helpful in explaining high isolation

effort. Multivariate analysis of acceptance test data us-

ing OSR found a number of patterns which were strong

indicators of both low and high isolation effort in this

data set. Future studies could be performed using other

SEL systems to test whether the relationships and pat-

terns which we found hold for more than just the two

systems that we analyzed.

We gained a better understanding of the data required

for thoroughly testing our hypotheses. First, to measure

vertical complexity, both the modularity of the specifi-

cation and its traceability to the code must be addressed.

To solve the latter problem, a traceability matrix could

be constructed in which the rows represent individual

code modules and the columns represent units of the

specification. A mark in the matrix means that the

module of that row implements the unit of specification

of that column. To build such a matrix, the modularity

of the specification is critical, but beyond the scope of

this paper. Second, to measure the effort required for a

change, we need to collect the isolation and implementa-

tion effort on a per-module basis whenever possible. A

minor change to the SEL's data-collection forms could

be to collect an estimate of the percentage of the total

effort required by each module. However, some effort,

such as the effort to test the changed modules together,

cannot be allocated to individual modules. Third, the

simplest and most helpful change to the SEL's data col-

lection forms (from our point of view) would be the use

of a ratio scale such as days or hours for collecting effort

data instead of the ordinal scales currently in use. This

would allow us to distinguish more precisely between

different changes as well as to compare effort data be-

tween the maintenance and acceptance test phases.

Finally, we believe that an empirical investigation

such as this one uncovers more challenging questions

than it answers. Future work might include replicat-

ing our study by analyzing the designs of other SEL

software systems or systems from other software devel-

opment organizations. Our data might also be used as a

basis for planning and running a controlled experiment

such as the one discussed in [Rom87] to test our hy-

potheses more rigorousb. In a controlled experiment,

programmers (subjects) might implement changes of

similar sizes in modules that have low, medium, and

high software design complexities. This would allow

the researchers to control for many effects as well as

to measure the effort required on a per-module basis to

implement changes. Such an experiment would offer

stronger evidence for refuting or accepting our hypothe-

ses than any case study.

7 Acknowledgements

We would like to thank Lionel Briand and Alfred

Br6ckers for help with the analyses, Dieter Rombach

for suggesting the hypotheses, Jon Valett for answer-

ing our questions, and most importantly, the SEL for

trusting us with their systems and data.

11

SEW Proceedings 307 S EL-94-006

References

[BBH93] Lionel C. Briand, Victor R. Basili, and

Christopher J. Hetmanski. Developing in-

terpretable models with optimized set reduc-

tion for identifying high-risk software com-

ponents. IEEE Transactions on Software

Engineering, 19(11): 1028-1044, November
1993.

[BR88]

[BTH93]

[BW841

Victor R. Basili and H. Dieter Rombach.

The TAME Project: Towards improvement-
oriented software environments. IEEE

Transactions on Software Engineering, SE-

14(6):758-773, June 1988.

Lionel C. Briand, William M. Thomas, and

Christopher J. Hetmanski. Modeling and

managing risk early in software development.
In Proceedings of the 15 th International Con-

ference on Software Engineering, pages 55-

65. n:EE, May 1993.

Victor R. Basili and David M. Weiss. A

methodology for collecting valid software

engineering data. IEEE Transactions on

Software Engineering, SE-10(6):728-738,
November 1984.

[CA88] David N. CardandWilliamW. Agresti. Mea-

suringsoflwaredesigncomplexity.Journalof

Sys_ms and Software, pages 185-197, June
1988.

[CCA86]

[Cur80]

David N. Card, Victor E. Church, and

William W. Agresti. An empirical study of

software design practices. IEEE Transactions

on Software Engineering, SE- 12(2):264-271,

February 1986.

Bill Curtis. Measurement and experimenta-

tion in software engineering. Proceedings

of the IEEE, 68(9):1144-1157, September
1980.

[Epp94] Andreas Epping. An empirical investigation

of the impact of the structure of two software

systems on their maintainability (in German).

Master's thesis, Department of Informatics,

University of Kaiserslautern, 67653 Kaisers-

lautern, Germany, April 1994.

[HB85]

[LZ84]

[Nat90]

[N_91a]

[Nat91 b]

[PS931

[Rom87]

[RUV92]

David H. Hutchens and Victor R. Basili. Sys-

tem structure analysis: clustering with data

bindings. IEEE Transactions on Software En-

gineering, SE- 11 (8):749-757, August 1985.

John B. Lohse and Stuart H. Zweben. Exper-

imental evaluation of software design princi-

ples: An investigation into the effect of mod-

ule coupling on system modifiability. Jour-

nal of Systems and Software, 4(4):301-308,
November 1984.

National Aeronautics and Space Administra-

tion. Software Engineering Laboratory (SEL)

Database Organization and User's Guide,

Revision 1. Technical Report SE1-89-101,

NASA Goddard Space Flight Center, Green-

belt MD 20771, February 1990.

National Aeronautics and Space Administra-

tion. Manager's handbook for software de-

velopment. Technical Report SEL-84-101,

NASA Goddard Space Flight Center, Green-

belt MD 20771, 1991.

National Aeronautics and Space Adminis-

tration. Software engineering laboratory

(SEL) relationships, models, and manage-

ment rules. Technical Report SEL-91-001,

NASA Goddard Space Flight Center, Green-

belt MD 20771, February 1991.

Rose Pajerski and Donald Smith. Recent SEL

experiments and studies. In Proceedings of

the 18 th Annual Software Engineering Work-

shop, pages 81-94. NASA Goddard Space

Flight Center, Greenbelt MD 20771, 1993.

H. Dieter Rombach. A controlled exper-

iment on the impact of software structure

on maintainability. IEEE Transactions on

Software Engineering, SE- 13(3):344-354,
March 1987.

H. Dieter Rombach, Bradford T. Ulery, and

Jon Valett. Toward full life cycle con-

trol: Adding maintenance measurement to

the SEL. Journal of Systems and Software,

18(2): 125-138, May 1992.

12

SEW Proceedings 308
SEL-94-O06

Does Software Design Complexity
Affect Maintenance Effort?

A study of existing NASA/SEL data

Andreas Epping, Uni-KL (M.S. thesis)
Christopher Lott, STTI-KL

19th GSFC Software Engineering Workshop
1 December 1994

Overview

• Problem and hypotheses

• Vertical and horizontal design complexity

• Study design, independent and dependent variables

• Results for maintenance data

• Results for acceptance test data

• Conclusions and lessons learned

STrI-KL 1/9

SEW Proceedings 309 S EL-94-006

Problem and hypotheses

It is generally believed that software design complexity affects error rate,
change effort etc.

Supporting studies include: Card et al., TSE 86; Rombach, TSE 87;
Card & Agresti, JSS 88; Briand et al., CSM 93.

We used existing SEL data to test two related hypotheses:

Hypothesis 1: Module implements many specifications (vertical complexity)
maintenance effort will be high

Hypothesis 2: Module is tightly coupled to others (horizontal complexity)
maintenance effort will be high

sT'rI-KL 2/9

x

c_
E
O

o_
L_
1=

>

Terminology: Design complexity

i Spec $1 1

A

imple- writes read by

ments o_

modx .4

calls

Horizontal complexity_

STFI-KL 3/9

SEW Proceedings 310
SEL-94-006

Design via G/Q/M
G

_are design complexity

..j_ith respect to its effect on maintainability...

Wha,_th_ut,_ o, What,sthed_s,r,bo,,o_o,
isolatitn effort fo'tm_ules implem'n effort lot modules

with _igh vertical comp_Rh high vertical complexity?
/

._, g _ M M

0 -"C, 0

Vertical Horizontal IsoJation Implem'n
complexity complexities effort effort

Independentvanables

Q

0
What is...

Dependent variables

M

©
Number of

modules changed

STFI-KL
4/9

Design: variables

Independent variables (newly gathered):

- Vertical design complexity (1 measure)

• Number of specifications which a module implements (in)directly
, Problems: modularity of the specification and traceability to code

- Horizontal design complexity (8 measures)
• Number of COMMON blocks referenced in a module
• Minor problem: limited to static metrics derived from the code

Dependent variables (existing data):

- Maintainability (3 measures)

• Isolation effort, Implementation effort, Number of modules changed
_, Problems: collected per change, not per module; ordinal scale for effort

S'R'I-KL
5/9

SEW Proceedings 311 SEL-94-006

Results for error corrections in maintenance

Unable to test hypothesis 1 (vertical complexity).

Results for hypothesis 2 (horizontal complexity) using 17 data points:

• Significant and strong correlations found with isolation effort

Example: 0.785 for count of visible global variables (.05 cutoff: .482)

• Significant but weak correlations found with implementation effort

Example: 0.511 for count of visible global variables (.05 cutoff: .482)

• No significant correlations found with locality

Example: -.303 for count of visible global variables (.05 cutoff: .482)

S'I-rI-KL 6/9

Results for error corrections in acceptance test

Unable to test hypothesis 1 (vertical complexity).

Results for hypothesis 2 (horizontal complexity) using 302 data points:

• Analyzed variables in combination using Optimized Set Reduction (OSR)

• Found reliable patterns for complexity values which predict isolation effort:

- Fan-in in 26-100% of value range AND fan-out in 0-50% _ low iso. eft.

(Reliability 0.85, reliability significance 0.011)
- Fan-out in 42-100% AND used data bindings in 59-100% _ high iso. eft.

(Reliability 1.00, reliability significance 0.007)

S_ 7/9

SEW Proceedings 312
SEL-94-0o6

Related work

Lohse & Zweben 1984 (JSS):
Controlled experiment to compare coupling via globals vs. formal parameters.
Results showed no significant difference; is not directly comparable.

Card et al. 1986 (TSE):
Case study of influence of software design practices on cost and fault rate.
Fan-out was highly influential; the influence was not as large in our study.

Rombach 1987 (TSE):
Controlled experiment to analyze influence of complexity on maint, effort.

Isolation effort affected more than imprn effort; supported by our study.

Card & Agresti 1988 (JSS):

Case study of influence of complexity on productivity and fault rate.
Different definition of complexity makes comparison impossible.

STTI-KL 8J9

Conclusions and lessons learned

Cannot test Hypothesis 1 (vertical complexity) using existing SEL data.

Can support Hypothesis 2 (horizontal complexity) using existing SEL data:

- Univariate analysis of horizontal complexity measures (i.e., coupling)
identified modules that are likely to cause changes to be expensive.

- OSR identified patterns in complexity (coupling) data likely to increase
isolation effort, but found no reliable patterns for implementation effort.

Lessons for the SEL:

- Correlations and patterns help predict maintenance effort.

- We are not confident enough to recommend complexity (coupling) limits.
- Need effort data drawn from a ratio scale ("days").

sTrI-KL 9/9

SEW Proceedings 31 3 S EL-94-006

SEW Proceedings 314 SEL-94-O06

